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Some fifteen years ago, Shuler formulated three conjectures relating to the large- 
time asymptotic properties of a nearest-neighbor random walk on Z 2 that is 
allowed to make horizontal steps everywhere but vertical steps only on a ran- 
dom fraction of the columns. We give a proof of his conjectures for the situation 
where the column distribution is stationary and satisfies a certain mixing condi- 
tion. We also prove a strong form of scaling to anisotropic Brownian motion as 
well as a local limit theorem. The main ingredient of the proofs is a large-devia- 
tion estimate for the number of visits to a random set made by a simple random 
walk on Z. We briefly discuss extensions to higher dimension and to other types 
of random walk. 

KEY WORDS: Random walk; random anisotropic lattice; invariance 
principle; local limit theorem; range; large deviations. 

1. INTRODUCTION A N D  STATEMENT OF RESULTS 

1.1. Model  

T a k e  the  la t t i ce  Z z a n d  a d d  b o n d s  r a n d o m l y  b e t w e e n  n e a r e s t - n e i g h b o r  

si tes in the  fo l l owing  m a n n e r .  Le t  

c =  {C(x)}xEz (1) 

{0, 1 } - v a l u e d  s e q u e n c e  w i th  p r o b a b i l i t y  law /~ o n  {0, 1} z be  a r a n d o m  

sa t i s fy ing  

(,) is s t a t i o n a r y  a n d  e r g o d i c  (w.r.t. t r a n s l a t i o n s  in  7/), 

0 < q = p ( C ( O )  = 1)~< 1 
(2)  
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Given C, add all the vertical bonds in the columns x with C(x)= 1. Add 
all the horizontal bonds in all the rows. Thus, all rows are connected but 
only part of the columns are. 

Next, given C, let 

w =  { W(n)},,>.o = (x, r ) =  {(X(n), r(n))},,~o (3) 

be the random walk that starts at 0 and at each unit of time steps with 
equal probability to one of the nearest neighbors connected by a bond. 
That is, W is the Markov process with probability law Pc on the path 
space (7/2) ~ given by the transition probabilities 

P c ( W ( n + l ) = ( x + l , y ) [  W(n)=(x,y))=�89 if C ( x ) = 0  
(4) 

Pc(W(n+l)=(x+_l,y+_l)[ W(n)=(x,y))=�88 if C ( x ) = l  

The process obtained after integrating over C with respect to p has prob- 
ability law P = ~ Pc p(dC). This is an example of a random walk in random 
environment. 

1.2.  Ans&tze  

Shuler c~ formulated three conjectures (to which he refers as 
"Ans~itze') relating to the asymptotic behavior of W(n) in the limit of large 
n under the law P. These concern, in particular, the following quantities: 

nx(n) = [{0~<m<n: X(m+ 1) ~ X(m)}l 

ny(n)= I{0~<m<n: Y(m+ 1)4: Y(m)}l 

x2(n) = EX2(n) 

y2(n)= Ey2(n) 

Q(n) = P(W(n) = O) 

R(n)=EI{ W(O), W(1) ..... W(n)}l 

(5) 

i.e., the total number of steps and the mean-square displacement in the x 
and y directions, the probability of return to the origin, and the expected 
number of distinct sites visited. E denotes expectation with respect to P. 

Ansatz 1: 

lira nx(n) = qx P-a.s. 
t l ~  oO n 

lira n.,.(n) = q.,, P-a.s. 
n ~ o o  n 

(6) 
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Ansatz 2." 

Ansatz 3." 

Q(n) ~ ~(n){x2(n) yZ(n)} -,/2 (7) 

R(n) ~ [3(n){x2(n) y2(n)} ,n (8) 

Here q.~ = 1/(1 + q) and qy = q/(1 + q) denote the density of horizontal and 
vertical bonds in the lattice [i.e., qx+q., ,= 1 and qy/qx=q by ( . ) ] ,  and 
both ~(n) and/~(n) are functions of n that are assumed to be independent 
of#. The symbol ~ means that the ratio of the two sides tends to 1 as 
n -+  o0.  

1.3. Consequence of Ansiitze 

Because for any C the random walk is nearest-neighbor and sym- 
metric, one easily sees that 

x2(n) = Enx(n) 

y'-(n)= En.,,(n) (9) 

and so from Ansatz 1 it follows that 

1 
x 2 ( n )  ~ n 

l + q  (10) 

y2(n)~  q n 
l + q  

Furthermore, a(n) and /~(n), being assumed independent of /a, may be 
calculated from the full lattice situation where all the columns are con- 
nected (i.e., q =  1). Indeed, since for this case it is well known that 2 
Q(n) ~ 1/nn, R ( n ) ~  ~n/log n (see ref. 2) and x2(n)= y2(n)= n/2, it follows 
from Ans~itze2 and 3 that ~(n)~  1/2re and f l(n)~2zr/logn and hence, 
via (10), 

l + q  
Q(n ) ~ 2~ql/2 n (11 ) 

2~q'/2n 
R(n) ~ (12) 

(1 + q ) l o g  n 

Thus, Shuler's Ans~itze predict the asymptotic behavior of each of the 
quantities in (5). 

2 The r andom walk  can return to 0 only at even times. Here and in (11) the symbol  ~ should  
be in terpreted in the obvious  sense, i.e., Q(n)~ I/Ttn replaces Q(n)~ 2/nn (n even), Q(n)= 0 
(n odd).  
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Note that the coefficients in (10)-(12) depend on # only via the den- 
sity of connected columns q. Moreover, (10)-(12) are precisely what one 
would find for a random walk on the full lattice that makes horizontal and 
vertical steps with probability qx= 1/(1 + q), resp. qy =q/(1 + q). Actually, 
this was the main idea behind the formulation of the Ansfttze in the first 
place: asymptotically the random walk should behave like an anisotropic 
random walk on ~2, with the anisotropy determined only by q and not by 
any other parameters of #. Though, as we shall see later, this is not quite 
true in full generality under ( . )  [not for Q(n) and R(n) at least], it is 
indeed true for many asymptotic properties associated with the random 
walk and within a large class of column distributions (including periodic 
distributions and i.i.d, distributions). 

It should be emphasized, however, that this degree of generality comes 
entirely from the special character of the model. For instance, it is known 
that there is strong dependence on the law of the random environment 
when single bonds rather than whole columns are connected randomly, as 
in the example of "the ant in the labyrinth" (i.e., random walk on a per- 
colation cluster(3"4)). Such models are extremely hard to analyze and have 
much more complex behavior. 

1.4. H is tory  

Before stating our results, we first give an overview of the literature. 
The column model was introduced in two papers, by Silver et aL (5) and 
Seshadri et al. ~61 Here (10)--(12) are obtained via explicit computation for 
various types of periodic column distributions. The machinery, which is 
based on Green's function techniques, also allows for going beyond the 
asymptotic term, but is rather heavy. This work led Shuler ") to formulate 
his Ans/itze, guided by the motto that "easy looking results deserve an easy 
looking explanation." 

Part of Shuler's ideas were then substantiated in three papers, by 
Westcott, ~7) Heyde/s) and Heyde etalJ 91 Here the component X(n) is 
investigated for afixed column configuration C satisfying certain asymptotic 
density conditions) First, Westcott proved (10) under the condition 

lim sup ICM.N--qI=O 
N~o~ M~Z (13) 

CM.N = N -  * ~ C(x) 
M < ~ x < M + N  

3 The model in refs. 7-9 allows for stepping probabilities that vary from column, but that will 
be of no concern to us here. 
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Next, Heyde replaced condition (13) by 

lim N I/z [Co._+N-q[ = 0  
N ~ o O  

895 

(14) 

proved Ansatz 1, and also deduced the following scaling property: There 
exists a coupling of X" and standard Brownian motion on R, denoted 
B =  {B(t)},~o, such that 

(1 + q)~/2 X(n) = B(n(1 + e,)) 

+ O(ni/4(logn)l/2 (log2n) 1/2) with e , ~ 0  a.s. (15) 

Both conditions (13) and (14) are automatic when C is periodic but fail 
p-a.s, when/.t is i.i.d. Finally, Heyde et al. weakened condition (14) to 

lira ICo.~N--ql=O (16) 
N ~ o o  

and proved the following result, weaker than (15): There exists a coupling 
of X and B such that 

lim sup X(Lntj) in probability for all Tfixed 
n ~ ot~ O <~ t <~ T 

(17) 

Their proof does not run via Ansatz 1, which actually is why they do not 
obtain (15). On the other hand, condition (16) holds p-a.s, under (,). 
Moreover, (17) implies that every functional of the path {((1 +q)/n) ~/2 
X(Lnt-J) },~ tO.T] that is continuous with respect to the supnorm metric con- 
verges in distribution to the same functional of Brownian motion. In other 
words, X'(n) satisfies the invariance principle (see ref. 10, Theorem 37.8). 

There is no statement in refs. 7-9 about the component Y(n), nor is 
there a discussion of the two-dimensional process W(n) or Ans~itze 2 and 3. 

The most recent results on the column model appear in three papers 
by Roerdink and Shuler ~H'~2~ and Roerdink. 1'3~ Here again only periodic 
column distributions are considered, but Ans/itze 2 and 3 are proven as 
well as some related results. Though the technique used in these papers is 
flexible, it cannot be used to deal with nonperiodic distributions. The 
reason is that there is the essential problem of interchanging the limits of 
large unit of periodicity and large time, something which is not always 
allowed, as will become clear below. 
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1.5. Theorems 

After this introduction we are now ready to state our results. Let Bq = 
{Bq(t)},>~o be anisotropic Brownian motion on R z with diffusion matrix 

0 D=(1/( loq)  q/(l +q)) (I8) 

We shall need the following mixing assumption on p: There exists a func- 
tion re(k) on the nonnegative integers satisfying Z~ ~>o m(k)= M < c~ such 
that 

(**) I $t(dC) {-I [C(xi)-q] 
i = I  

j - I  
<~ H m(x,+t-xi) forall  j>~2 and X l ~  " ' "  ~ X j  (19) 

i = 1  

This property holds, e.g., for all Gibbs states with finite range potential 
(ref. 14, Section 5.30). In Sections 2-4 we prove: 

T h e o r e m  1. Assume (.). Then Ansatz 1 is true. Moreover, W 
satisfies the invariance principle, i.e., there exists a coupling of W and Bq 
such that 

lim sup In - l /ZW(LntJ ) -  Bq(t)l = 0 in probability for all Tfixed 
n~et~ O<~I<~ T 

(20) 

Ans~itze 2 and 3 may fail when/~ has sufficiently strong correlations. 

T h e o r e m  2. Assume ( , )  and (**). Then both Ans~itze 2 and 3 are 
true. Moreover, there exists a coupling of W and Bq such that 

W(n) = Bq(n) + O(n3/S(log n) 7/8 ) a.s. (21) 

Furthermore (recall footnote 2) 

lim sup 12nn IIDII m P(W(n)= w)-e  -~1/2"~<"''~ = 0  (22) 
t l  ~ ~ w 

Properties (21) and (22) represent a strong form of scaling and a local 
limit theorem. Both may fail when (**) is dropped. 

It is easy to prove (21) and (22) when/~ is periodic, a case which is 
not included in (**). It turns out that for this case the error term in (21) 
can even be slightly refined (see the end of Section 2.3). 
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Our approach to prove Theorems 1 and 2 can be easily extended to 
higher dimension and to other types of random walks. This will be dis- 
cussed briefly in Section 6. 

1.6. Random W a l k  in Random Scenery  

There is an interesting connection with a large-deviation property for 
random walk in random scenery which we formulate here because it is of 
some independent interest. As part of the proof of Theorems 1 and 2 we 
establish in Section 5: 

Proposition 1. Let C={C(x)}x~ z be a random {0, 1}-valued 
configuration on 7/ with probability law /~ satisfying ( . )  and (**). Let 
S =  {S(n)},,>~0 be a random walk on 7/with i.i.d, increments of mean zero 
and finite variance. Denote by P the probability law of these two processes 
independently joined together. Let N(n)=~.o~i<,,C(S(i)) be the total 
number of l's that the walk visits up to time n. Then for every e > 0 there 
exists K(e) > 0 such that 

P(In-lN(n)--ql >~)~<e -K{~}''/~ for all n large (23) 

In addition, for L sufficiently large 

~'. P(IN(n) - qnl > L(n log n) 3/4) < 00 (24) 
n ~ . O  

This proposition may be viewed in the light of the following results 
that are known for /~ i.i.d.: (i) Donsker and Varadhan "5} proved that 
n-~/310gP(N(n)=O) has a nontrivial limit; (ii) Kesten and Spitzer {~6} 
proved that n-3/4(N(n)-qn) converges to a nontrivial limit random 
variable. 

2. P R O O F  OF A N S A T Z  1, (20) ,  A N D  (21)  

The proofs in Sections 2-4 center around the idea that, given C, both 
X(n) and Y(n) behave as simple random walk on 7/ except for a random 
time delay. Indeed, first X(n) makes a succession of steps until it hits a 
connected column. Next the walk spends some time on this column, during 
which X(n) remains fixed and Y(n) makes a succession of steps, until the 
walk decides to move off the column. Then X(n) again takes over, until 
it hits a next connected column, etc. Since the successive times spent on 
connected columns are i.i.d, random variables with a simple distribution, 
the main point is to obtain information about the number of visits to con- 
nected columns by X(n) after a given number of horizontal steps. But this 
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is a problem of how often a simple random walk on 77 visits a random set. 
It is here that Proposition 1 in Section 1.6 comes in. The rest of the proof 
is straight sailing, except for a storm or two. 

2.1.  A n s a t z  1 

Let z~(i) and Zy(i) denote the times at which X and Y make their ith 
step (i>~ 1) and set zx(0)=Zy(0)=0. Then both 

{S.,.(i)},>~o= {X(zx(i))},>~o 

{Sy(i)},~>o = { Y(zy(i).)},>.o 
(25) 

are simple random walks on 7/ independent of C and independent of each 
other, even though L~(i) and Ty(i) depend on C. Let 

I(i) = C(Sx(i)) 

= indicator of X hitting an open column at its ith step (26) 

Then by ( , )  

{I(i)}i>~o is stationary and ergodic (27) 

[The stationarity is immediate because Sx(i) is independent of C. 
The ergodicity requires application of a random ergodic theorem of 
KakutaniJ 17~] Set 

N(nx)= ~ I(i) 
O < ~ i < n  x 

= number of visits to connected columns by X before its nxth step 

(28) 

By the ergodic theorem we have, using that El(O)= q, 

N(n.,.) 
lira = q a.s. (29) 

n ~  ~ ct3 n X 

This is a law of large numbers for the horizontal motion. 
Next let 

J(j) = number of steps by Y between the j th  and (j  + 1 )th visit 

to a connected column by X (30) 
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Because a connected column has vertical bonds  everywhere, we know that 
{J(J )} j~l  is an i.i.d, sequence of r andom variables with law P(J ( j )=  k ) =  
(1/2) k+l  (k~>0). Set 

my(n,:) = ~ J(j)  
1 <~ j <~ N(nx) 

= number  of steps by Y before the n,.th step by X 

By the strong law we have; using that  E J(1 ) =  1, 

lim my(nx_.. ) _ 1 
A,(,,,.),~ N(nx) 

a . s .  

This is a law of large numbers  for the vertical motion.  
Combining  (29) and (32), we get 

lim mv(nx) = q  
n x ~ o r  n x 

Now 

and hence 

(31) 

(32) 

a.s. (33) 

L~(nx) = nx + m.,,(n.,.) (34) 

lim %(n,.) = 1 + q a.s. (35) 
n X ~ o o  n . . ,  4 

To turn (35) into a s tatement  for the r andom variables nx(n) and n,.(n) 
defined in (5), note that  rx(nx(n)) is the last t ime before time n at which 
X makes  a step. Therefore 

"rx(nx(n)) ~< n < "c.,.(n.,.(n) + 1 ) (36) 

Because n~(n) obviously tends to infinity a.s. as n ~ ~ ,  Ansatz I follows 
from (35) and (36). 

2.2. Proof of (20) 

To deduce the invariance principle in (20), write 

n., .(n)=(qx+e,,)n 

n.v(n ) = (q.,,- e, )n  
(37) 
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where lim . . . .  e, = 0 a.s. by Ansatz 1. Because Sx and Sy are independent 
simple random walks satisfying the invariance principle, there exists a 
coupling of W [recall (3)] and a pair (Bx, By) of independent standard 
Brownian motions on R such that 

W(n) = (S.,.(nx(n)), Sy(n.,.(n))) 

= (Bx((qx + e,)n), By((qy - e,)n)) 

+ o(n 1/2) a.s. (n--*oo) (38) 

Now, by standard Brownian scaling, B,~((qx +e , )n )  has the same law as 
[(qx +e,)/qx] la Bx(qxn), and similarly for By. Therefore (20) follows after 
replacing n with Lntd in (38) and scaling out the n-variable. Note that 
{Bq(t)},>~o, defined in (18), is the product of {Bx(qxt)} ,~o and 
{By(qyt)} ,>~o. 

2.3. Proof of (21) 

To prove (21), we shall refine the argument in Sections 2.1-2.2 using 
Proposition 1 in Section t.6. Abbreviate 3 ( n ) = L ( n l o g n )  3/4 with L the 
constant in (24). 

Using (31), one easily checks that 

P(Im.,,(nx) - qn,.I > 26(nx)) ~< P(lN(nx) - qnxl > 6(n.,.)) 

+ �9 ~ > qn.,, P ( l  <~ j~q. , .  + ,~o,.., J ( j )  . + 26(nx)) 

+ P ~ < qnx ( l <. j <. q,, _ ,5(,,,) J ( j )  --[ - 26(nx)) (39) 

For the first term in the r.h.s, of (39) we have the estimate given in (24). 
The second and the third terms can be estimated via a standard large- 
deviation argument for i.i.d, random variables. Indeed, by the Markbv 
inequality the second term is bounded above by 

inf exp[ - r + 26(n0)]  {E exp[~J(1 )] } q,,.,. + ~,,,I 
,~>0 

= inf exp{ --~6(n,.)+ ~2[1 + O(~)][qnx + 3(nx)] } 
,~>0 
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Here we use that Eexp[~J (1 ) ]  < ~  for ~ <  1/2, E J ( 1 ) =  1, V a r J ( 1 ) = 2 ,  
implying that E e x p [ ~ J ( 1 ) ] = e x p [ ~ + ~ 2 + O ( ~ 3 ) ] .  Exactly the same 
bound is obtained for the third term through a similar reasoning. 

Thus, summing (39) on nx and using (24) and (40), we get 

~, P(lm.Jnx)-qn., .I  >26(n , . ) )<oo 
nx > 0 

Hence by Borel-Cantelli 

Imjnx)  - qn.,.I ~< 26(n.,.) 

Via (34) this is the same as 

Irx(n, . ) -  (1 + q)nxl ~< 26(n.,.) 

(41) 

a.s. (n.,. ~ oo) (42) 

a.s. ( n x ~  oo) (43) 

From (43) and (36) together with Ansatz l  we obtain, recalling that 
q.,.= 1/(1 +q) ,  

In., .(n)-qxnl<~2qx6(n) a.s. (n --* oo) (44) 

Equation (44} is a refinement of Ansatz 1. 
To get (21), we proceed as follows. First we use a result by Koml6s 

et al. (~s) which says that there exists a coupling of simple random walk S 
and standard Brownian motion B such that S( i )=  B( i )+O( log  i) a.s. 
(i ~ ~ ). Hence via (44) 

W(n ) = ( S.~(nx(n ) ), Sy(n.v(n ) ) ) 

= (B.J (q.,. + e,,)n), B.,,((q,.- e,,)n)) + O(log n) 

with ]e,n]<~26(n) a.s. ( n ~ )  (45) 

This is a refinement of (38). 
Next we estimate the increments of Bx and By over the time interval 

e,n. To do so, we use the elemental property 

P(B(t) > [tqk(t)] '/z) 

~exp[-�89 '/2 as t ~ o v  when lim ~b(t)= 
I ~ o o  

It follows that for large n 

P( IBx( (qx + e,)n) - Bx(qxn)l > L[  6(n) log 6(n)] i/2 

~< P(IB(28(n))I > L[8(n) log 6(n)] 1/2 (46) 
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where the r.h.s, summable in n when L is sufficiently large. Hence by 
Borel-Cantelli 

B,.((q.~+~,,)n)=Bx(q.,.n)+O([f(n)logf(n)] m) a.s. ( n ~ )  

Substituting the latter into (45), together with the definition of 6(n), we get 

W(n) = (B.,.(q.,.n), By(q,.n)) + O(log n) 

+ O(n3/8(logn) 7/") a.s. ( n ~ )  (47) 

This proves (21). 
For /~ periodic the error term in (24) a~ad (45) can be sharpened to 

O((n log n) ~/z) (see Lemma 12 below), in which case the error term in (21) 
becomes O(n l/4(log n)3/4). 

3. PROOF OF A N S A T Z  2 A N D  (22) 

3.1. Heuristics and Counterexample 

Heuristically, to prove Ansatz 2, we would like to argue as follows. 
Write 

Q(n) = P(X(n)= Y(n)=0) 

= P(Sx(n.,.(n))= S,,(n,.(n))=0) 

= ~ P(n. , . (n)=m,S, . (m)=Sy(n-rn)=O) (48) 
O~<m~<n 

Because of Ansatz 1, only terms with m ~-q.,.n contribute to the sum and 
therefore 

Q(n)~ P(S,-(qxn)=0) P(S.,(q,.n)=0) (n --* ~ )  (49) 

where we again use that S,. and S.,. are independent of C and of each other. 
But for simple random walk on 7/ it is well known that P(S(n)=O)~ 
1/(27rn)1/2 ~21 and so (49) is the same as (11). 

The trouble with the above argument is that we should estimate the 
remaining terms with m ~ q,.n in the sum of (48). Namely, we should 
show that their contribution decays faster than 1/n, which is the rate in 
(11). To see where (11) can go wrong, observe that Q(n)~P(X(n)=O,  
C(X(k)) = 0 for 0 ~< k ~< n) because Y cannot step as long as X does not hit 
a connected column. Now until X does, X behaves as a simple random 
walk and so the latter probability can be further bounded below by 
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P(S(n)=O) # ( C ( x ) = 0  for Ixl <<.n/2). Hence we see that (11) will fail as 
s o o n  a s  

lim nl/2#(C(x) = 0  for Ixl <~n/2) = ~ (50) 

Such behavior is possible, e.g., when ,u is a renewal process with a suf- 
ficiently thick tail (ref. 19, Section 7.5). Thus it is clear that for Ansatz 2 to 
be true we must temper the correlations in /~ and this is precisely where 
(**) comes in. 

3.2.  P r o o f  of  A n s a t z  2 

Repeat (39) and (40) but with ~(n) replaced by ~(n)=~n (0 <~,~  1). 
Then, using (23) to estimate the first term in the r.h.s, of  (39), we get for 
n x large 

P( n.~ lm.,,(n.,.) - ql > e) ~< exp[  - K ( e )  n.l,/3-1 (51) 

with K(~) the constant in (23). Equivalently, via (34), 

P(ln.7 lrx(nx) - q.~- l I > e) ~< exp[  - K ( e )  n.~/3 ] (52) 

Since T~(i) is strictly increasing in i, it follows via (36) that 

e(nx(n) > V(qx + e)n-1) = P(rx(n,.(n)) > r.,.(V (q.,. + t)n-~)) 

<<. P(n > zx(I- (q.~ + ~)nT)) 

=O(exp[--K(e)V(qx+e)n-]L/3]) (53) 

where the last equality comes from (52). The reverse inequality is obtained 
similarly and so 

P(In - ln~(n ) -qx l  > ~ ) = O ( e  -L~ ' ' /3)  fo r some  L ( ~ ) > 0  (54) 

Now return to (48). Because S.,, is independent of X and C, we have 
from (54) 

a(n)  = P(X(n) = Y(n) = O) 

= O(e-Lt~"'/3)+ ~ P(n~(n)=m, Sx(m) = 0) 
Irn - -  q x n l  <<. ~:n 

• P(Sy(n - m) = 0) (55) 

and similarly 

P(X(n) = 0) = O(e - Lt')"'/3) + P(n.~(n)=m, S.~(m) = 0) 
I m - -  q x n l  <~ c n  

(56) 
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Since e may be picked arbitrarily small, we can combine (55) and (56) with 
the standard local limit theorem P(Sy(qyn)=O)~ l/(2nq.,,n) ~/2 to obtain 
(recall that qx + qy = 1 ) 

P(X(n) = o) 
Q(n)~ (2~qyn)l/2 (57) 

Equation (11), and hence Ansatz2, will follow from (57) once we have 
proved the following lemma: 

L e m m a  1 : 
! 

P(X(n)=O)~(2rtqxn)l/z (n--* ~)  (58) 

3.3.  P r o o f  o f  L e m m a  1 

The proof of Lemma 1 requires a sequence of steps contained in 
Lemmas 2-6 below. We shall again exploit Proposition 1 in Section 1.6. 
However, the proof is quite delicate because Lemma 1 is a local limit 
theorem, whereas Proposition 1 has a global character. 

We begin with two preparatory lemmas, which lead to a spectral 
representation for P(X(n)=O). For fixed column configuration C the 
component X is a Markov process with transition kernel Qc(x, y) given by 

(Qcf)(x) = ~  Qc(x, y) f (y)  
Y 

= C(x){�88 I ) +  �89 i f ( x -  1)} 

+ [ 1 - C ( x ) ] { � 8 9 1 8 9  (59) 

i.e., simple random walk with pausing probability 0, 1/2 on sites x with 
C(x)--0, resp. 1. Our first observation is a reversibility property. 

L e m m a  2. For every G 

[l+C(x)]QOc(X,y)=[l+C(y)]Q"c(y,x ) (x, ye~_,n>~O) (60) 

Proof. Obviously true for n =0,  1. Use induction. I 

As a consequence of Lemma 2, we obtain the following spectral 
representation: 

k e m m a  3. For every C there exists C<c: [ -  1, 1 ] --+ R nondecreasing 
and continuous at _+ 1 such that 

I' 
P~(X(n)=O)=O"c(O,O)= X"a~c(X) (n>~O) (61) 

- - !  
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Proof. Consider the Hilbert space 12(7/) with inner product 

<f, g>c = ~ [1 + C(x)] f(x) g(x) (62) 

As an operator acting on this space, Qc is a self-adjoint contraction. 
Indeed, using (60), we have 

( f ,  Qcg)c  = ~ [1 + C(x)] f(x) Qc(x, y) g(y) 
x ,  y 

= Y' [1 + C(y)]f(x) Qc(Y, x) g(y) 
x ,  )'  

= (g, Q c f ) c  = (Qcf ,  g)c  (63) 

Moreover, by Jensen, 

(Qcf ,  Qcf)c<~ ~ [1 + C(x)](Qcf2)(x)= ~ [1 + C(y)] f 2 ( y ) =  ( f ,  f ) c  
x y 

where the first equality again uses (60). Since 

1 
Q"c(O, O) - -  (6 o, Q"c6o)c (64) 

1 + c ( 0 )  

the claim follows from the spectral theorem for self-adjoint operators (see 
ref. 20, Chapter VII). 

To get continuity of C~c(2) at 2 = +1, we must show that Qc has no 
eigenvalues _+ 1. Indeed, Qc and Q~ are both recurrent and irreducible 
Markov kernels (because the simple random walk on 7/ is recurrent and 
irreducible). Hence the only harmonic functions f (i.e., Q c f = f ,  resp. 
Q2cf=f) are the constants fa(x)-a.  ~2~1 But fael2(7/) iff a = 0 .  | 

Lemma 3 is an important regularity property, as it will allow us to 
deduce the asymptotic behavior of Pc(X(n)=O) for n ~  ~ from that of 
ac(2) for 2--* _+1. Therefore we proceed by introducing the generating 
function 

Hc(z)= ~ z"Pc(X(n)=O) (Iz[ < 1) (65 )  
n = O  

Substituting (61) into (65), we get 

I' 1 
Hc(z) = - dctc (2) 

- l  1 ,;tz 
(66) 
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The remaining steps in the proof of Lemma 1 consist of doing a 
Tauberian-Abelian type analysis exploiting the relations (65) and (66). 

To prepare for this analysis, we write our next lemma, which is a 
Girsanov-type formula linking He(z) in (65) with the return to the origin 
of simple random walk. 

L a m i n a  4 .  
and let N(n)=Eo~i<,, C(S(i)). Then 

Let S be simple random walk on 7/ independent of C 

Hc(z)={C(O)22 [ I - C ( 0 ) ] }  

( 1 {S(n) = 0} ( 1---~--'~ N''''] 
x _ z"E \ 2 - z J  l 

n = O  

Proof. 
a survival probability per step. Then, according to (65), Hc(z) can be 
interpreted as the average number of visits to 0 by X prior to death. Since 
X is simple random walk with pausing probability 0, 1/2 on sites x with 
C(x) = 0, resp. I, the probability that X survives a visit to x (i.e., survives 
to move away from x after hitting it) equals 

(67) 

The shortest argument is as follows. Think of the variable z as 

(68) 
z if C(x)=O 

1 / 1 ' ,  2 z 
~ z + ~  )z + . . . .  2 - z  if C ( x ) = l  

This explains the factor 

(z ;,n, 
Z n - N ( n )  =z"  (69) \i- -zj 

in (67) as the probability that X makes at least n actual steps as a simple 
random walk. The average time that X spends at 0 after hitting it (condi- 
tioned on survival) equals 

(70) 
1 if  C ( 0 )  = 0 

1 2 
= if C(0)= 1 l + ~ z + - - .  2 - z  

This explains the front factor in (67). | 

Lemma4 allows us to compute the singularity of Hc(z) as z ~  +1. 
Proposition 1 in Section 1.6 is again instrumental. 
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L e m m a  5. Assume ( , )  and (**). Then 

1 + C(O) 
lim:T~ ( l - z )  ~/2Hc(z)= [2 (1+q) ] ' /2  /~-a.s.  and in L'(/I) (71) 

Hc(z) remains bounded as z~ - 1  /l-a.s. and in Lt(#) (72) 

Proof. By (24) and Borel-Cantelli 

IN(n)-qnl <~.O((nlogn) 3/4) a.s. ( n ~  c~) (73) 

Put e =  1 - z .  Pick 1 < y < 4 / 3  and split the sum in (67) into two parts 

Hc(Z) l " = Hc(Z) + H~(z) (74) 

with n running over [0, e - : ] ,  resp. (e -~', oo). The second sum can be 
trivially bounded by 

H~-(z)~<2 ~ ( 1 - e ) " = O ( e  -~'-;') ( e l0 )  (75) 

and therefore does not contribute to the singularity at z = 1 in (71). In the 
first sum we can substitute (73) to get 

H~-(z) = 1 + ~ - -~  C(0) (1 
/t ~ -)' 

( ( 1 ) q , , + o , , , , o g , , , 3 / * ) )  
• E 1 { S ( n ) = 0 }  \~ - - -~ /  

= E1 + C(O)][1 +o(1)q ~ { e - ( l  +q)~{ l  + ~  n 

n~<~-Y 

x P(S(n)=O) (e,[ 0) (76) 

Here the error term O((n log n) 3/4) in the exponent can be delegated to the 
front factor 1 +o(1)  because (n log n)3/4= O(e-3y/410ge) uniformly over 
the sum (use that ] y <  1)). 

The r.h.s, of (76) brings us to the Green's function of the simple 
random walk defined by 

G(z)= ~ z"P(S(n)=O) (77) 
n=O 

Indeed, by combining (74)-(76), we get 

Hc(z) = O(e -~'-~') + [1 + C(0)] [1 + o(1 )] 

• G(e -(l+q)a(l+~ (e~.O) (78) 

822/75/5-6-9 
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[where we pick up an additional O ( e x p ( - e  ~-~)) after extending the sum 
in (76) to oo]. If we now substitute the well-known relation t2) 

1 
G ( z ) -  (1 - z2) 1/2 (79) 

which implies 

1 
lim emG(e -"  +q)m +o~J))) = .  (80) 
**o [2(1 + q)] 1/2 

then we get the claim in (71) for #-a.s. all C. 
To show that the convergence in (71) also holds after both sides are 

averaged over C with respect to /~, substitute the trivial bounds 0~< 
N(n) <~n into (67) to obtain, via (77), 

z ) Hc(Z) ~G(z) ( 8 1 )  
G ~ ~< 1 + [z / (Z--z) ]  C(0) 

It follows from (79) that (1 - z )  ~/2 Hc(z)  remains bounded as zT 1, so that 
a.s. convergence implies convergence in L1(/~). 

Finally, (72) is immediate from (67) and (73). II 

We are now ready to prove Lemma 1. Integrate (61), (65), and (66) 
over C to get 

P(X(n) = O) = f I~(dC) Pc(X(n)  = O) 

=f~ 2"d~(2) (82) 
- 1  

I4(~) = E z"V(x(n) = o) = I u(ac) 14c(~) 
n ~ O  

. j t  1 d~(2) (83) 
i 1 2z 

with ~: [ -  1, 1 ] ~ R nondecreasing and continuous at + 1. Put 

/~(;t) = ~(1  ) - ~( 1 - ,~) 

/~(2) = ~(1 + ; t ) - c t ( -  1) 
(84) 
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Then the r.h.s, of (83) transforms into 

H(z) =-1 12 1 2 dfl(2) 
z o ( l - z ) / z +  

__(_ , 
- ( 1  + z)/z + 2 

dfi(;t) (85) 

The latter expressions identify H(z) as the Stieltjes transform of the positive 
measures dfl(2), resp. dfl(2), at the points (1 -z ) / z ,  resp. - (1  +z)/z. This 
is a useful representation because there is a Tauberian theorem for Stieltjes 
transforms: 

Tauberian T h e o r e m .  Let 7: [0, ~ )  ~ R be right-continuous and 
nondecreasing with ~(0)= 0. Assume that 

f ( s )  = ~ - ~  ay(2) (86) 

converges for s > 0. Then for any A >/0 and 0 < 6 < 1 the following are 
equivalent: 

f ( s )  ~ As ~ - l (s ], O) 

A (87) 
~(,~) ~ ~ (~]'0) 

r ( l +  6) r ( 1 -  6) 

Proof. See ref. 22, Theorem 1.7.4. I 

By applying this theorem to H(z) we arrive at: 

Lemma 6: 

fl(2)',~ [2(1 + q)]m 2 m (2]'0) (88) 

fi(2)= o(2) (2],0) (89) 

Proof. Combine (71) with (85) and the Tauberian theorem [for 
s =  (1 - z ) / z ,  6 = 1/2, A = �89 + q ) m ]  to get (88) [note r(3/2) = �89 
�89 Combine (72) with (85) to get (89). | 

Finally, we can now combine (82), (84), (88), and (89) to obtain 
Lemma 1 using the standard Abelian theorem for Laplace transforms (see 
ref. 23, Chapter V, Theorem 1 and Corollary la). 
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3.4. Hint  at Proof of (22)  

The local limit theorem in (22) is a refinement of Ansatz 2 in the sense 
that it identifies the asymptotic behavior of P(W(n)= w) as n---, ~ for all 
w of order n 1/2 (see ref. 24, Section 7 for the analogous statement for the 
simple random walk). The proof of (22) uses the same Tauberian-Abelian 
technique as in Section 3.3, with the difference that it is based on a spectral 
analysis of the Fourier transform 

Ec(e  i'~ ) (~ ~ R) (90) 

For this quantity there is a Girsanov-type formula similar to the one in 
Lemma 4. (Again the Y component can be separated off using the argu- 
ment in Section 3.2.) For reasons of space we omit the details. The reader 
is referred to ref. 25, where the main tools appear. 

4. PROOF OF ANSATZ 3 

Define the generating function 

Re(z)= ~ z"Rc(n) 
n ~ O  

Rc{n)=Ecl{W(O), W(l) ..... W(n)}l 
(91) 

Qc(z)= ~ z"Qc(n) 
n = 0  

Qc(n) = Pc(W(n) = O) 
(92) 

This expression, formulated in Lemma 7 below, is a generalization of the 
- ( 2 }  relation 

1 
R(z) -  (1 - z) 2 Q(z) (93) 

that holds for the full lattice situation where all the columns are connected 
[i.e., C(x) =_ 1 ]. 

k o m m a  7. Assume (,). Then 

Ac(z)  (94) f .(.c)Rc(z)=(1-z) '; Qc(z----T} 

Here Re(n) is the same as R(n) defined in (5) but conditioned on C. We 
begin by deriving an expression that links Re(z) to the generating function 
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where 

( 1 i) At ( z )=  [1 +C(0)]  ~" z"Ec 1 + ~ X ( n )  (95) 
n p .  0 

Proof. Fix C. Define, for x, y ~ 7/2, 

P~)(x, y )=Pc(W(n)=  Y l W(0) =x)  
(96) 

F~-')(x, y)= Pc( W(n)= y, W(m) # y for O <~ m < n [ W(0)=x) 

These probabilities are linked via the renewal relation 

P~.)(x, y)= ~. F~c')(x, y) P~: .... )(y, y) (97) 

In terms of the corresponding generating functions 

Pc(x, y; z) = ~ z"P~)(x, y) 
,=o (98) 

c o  

Fc(x, y; z) = ~ z"F~.')(x, y) 
n ~  I 

Eq. (97) reads 

Pc(x, y; z) = Fc(x, y; z) Pc(Y, Y; z) 

Next observe that 

Rc(n)= ~ Pc(W(m)Ci{W(O), W(I) ..... W ( m - l ) } )  
m = 0  

=1+ ~ Z r~c m)(0'x) 
m =  I . ' r  

Hence, via (99) 

mE ] Rc(z)=-f-~_ z 1+ ~. Fc(O, x; z ) 
x # O  

= 1 Z Pc(O,x;z) 
1 -  z ~ Pc(x, x; z) 

Integrate over C and use (,) to get 

f  (dC) Rc(Z)= (I-  z)-' f  (dC) Z., Pc(x, O; z) 
Pc(O, O; z) 

(99) 

(I00) 

(101) 

(lO2) 
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The sum in the r.h.s, of (102) may be rewritten by using the rever- 
sibility property 

p(n), [ l + C ( x ) ]  c~X,y )=[ l+C(y)]P~ ' l (y ,x )  (x, y6~_2, n>lO) (103) 

which is analogous to (60) in Lemma 2. This gives 

Y. P~(x, o; z)=Y.  1 + c(o) x .~ 1 + C(x---~) Pc(O, x; z) 

= [ I + C ( 0 ) ]  ~ z " ( ~  1 '(0, x ) )  104) 
,,>~o . 1 + C ( x )  p~2 ( 

which proves the claim. I 

Lemma 7 is a useful representation, as will become clear from 
Lemmas 8 and 9 below. Our next step is to note that Ac(z ) in (95) has 
rather simple behavior as z T 1. 

Lemma 8. Under (*) 

1 + c ( 0 )  
lim (1 - z) Ac(z) p-a.s. (105) 
:TI 1 + q  

ProoL Consider the environment process on {0, 1} Z defined by 

{Zx~,,~C},,>~o (106) 

with rxC the column configuration C shifted over x [i.e., (L~C)(y)= 
C(x+y)]. This process is reversible and ergodic under the law/1 o defined 
by 

rig(C) 1+C(0) 
~ + q  (107) 

a fact which is an immediate consequence of (*) and (60) (see ref. 3, 
Lemma 4.3). Hence, by the ergodic theorem, 

( , )  (1 )  
lim(l-z)__t, ~ z"Ec I+C(X(n )  =Eu~ 1 +C(0)  

n>~O 

~0-a.s. (108) 

Since Euo(1/[l + C ( O ) ] ) = I / ( I  + q )  and p is absolutely continuous with 
respect to Po, the claim follows. II 

Next we study the behavior of Qc(z) in (95) as zT 1. 
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Lemma 9: 

lim Qc(z) 
--rl - log(1  - z )  

1 + C(O) 1 
1 +q 2~(qxq:.) u2 

Proof. Return to Ansatz 2. For fixed C we have 

p-a.s. (109) 

1 + C(O) 1 
Qc(n)~ qt)l+--2rr'q.~qy'l/2n (n--)oo) /,t-a.s. (110) 

The front factor [ l+C(O)] / ( l+q)  can be traced back to (71) via 
(55)-(57) [or  apply the Tauberian Theorem in Section 3.3 directly to (66), 
substitute the result into (61), and use the analog of (57) for fixed C]. 
From (110) we get (109) via the standard Abelian theorem for power series 
(ref. 22, Corollary 1.7.3). | 

Finally, putting Lemmas 7-9 together and writing R(z) = S/~(dC) Rc(z), 
we arrive at: 

(111) 

Lemma 10: 

lim [ - (1 -- z) 2 log(1 -- z)] R(z) = 2~(q.,.qy) uz 
zTl 

Proof. Combine (105) and (109) to get 

lim [ - ( 1  - z )  log(l - z ) ]  Ac(z)--2rr(qxq,)l/2 #-a.s. (112) 
:r' Qc(z) 

It is straightforward but tedious to show that the convergence in (112) in 
fact also holds in L~(/t), which is what we need in order to deduce (111) 
via (94). We know that ( 1 - z ) A c ( z )  is bounded [recall (95)-1. Hence 
it suffices to show that [ - l o g ( 1 - z ) ] / Q c ( z )  converges in L~(/I) [recall 
(109)]. This can indeed be checked by tracing back the argument leading 
to (110). The proof relies on the large-deviation estimates obtained in (44) 
and (54). For reasons of space we omit the details. II 

From (111) we immediately obtain Ansatz 3. Namely, we have 
R(z) = ~,>~o z"R(n) with R(n) defined in (5) [recall (91)]. Moreover, R(n) 
is nondecreasing, so we can apply the standard Tauberian theorem for 
power series (ref. 22, Corollary 1.7.3). 

5. PROOF OF P R O P O S I T I O N  1 

In this section S is a random walk on 7/with i.i.d, increments having 
mean zero and variance 0 < a 2 < ~ .  Let 

t , ( x )=  # { 0 ~ < i < n : S ( i ) = x }  (113) 
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denote the local time of S at x before time n. Then we can write 

N ( n ) =  ~ C(S( i ) )=~l . ( x )  C(x) (114) 
0 ~ < i < n  x 

The proof of Proposition 1 is based on Lemmas 11 and 12 below, which 
are large-deviation estimates. In what follows g(n) and h(n) are arbitrary 
positive functions of n, to be specified later. 

Lemma 11. If either g(n)=o(n TM) or g(r/)=srt  TM (0<t ; ,~  1), then 
for large n 

P(N(n) - qn > n3/4g(n) ) <~ P(sup l,,(x) > n.t/2h(n) ) + ne-g2~n~/4m2h~ (115) 
x 

ProoL By the Markov inequality we have for any ~ > 0 

P(N(n ) -  qn > nS/4g(n)) 

~< P(sup l,(x) > nmh(n)) 
x 

+ e-r CtNt"J-q"l 1 {sup In(x) <~ nU2h(n)} ) 
A" 

(116) 

The first term in the r.h.s, of (116) will be estimated in Lemma 12 below. 
To bound the second term, we argue as follows. 

Because S and C are independent and ~.x l,,(x) =n, it follows from ( . )  
and (114) that 

E([N(n)  - qn] 1 {sup l.(x) <~ nmh(n) }) = 0 (117) 
x 

and 

E([N(n)  - qn ] j 1 {sup l,,( x ) <~ nl/Z h(n ) } ) 
x 

= E (  ~ l,,(xl)x ... xl,(xj) c(xi ..... xj) 
X l  . . . . . .  ~c I 

x l{supl,(x)<~nl/2h(n)}).~ (j~>2) 

Here we introduce the j-point correlation function of C defined by 

(118) 

c(xl ..... x j ) = f  tz(dC) ~ [C(x~)-q]  (119) 
l < ~ i < ~ j  

To estimate the r.h.s, of (118), we first order the sites under the sum. Define 
a(xl,...,xj)=(~.~.~,,)!/l-[.,.j,,! with j.,,=~{=~ l { x i = y }  (i.e., the number of 
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distinct permutations of the sequence xl ..... x~). With this notation we can 
rewrite the sum in the r.h.s, of (118) as 

cr(xl ..... xj) l , ,(xl)• " .  • c(xl ..... xj) (120) 
xl <~ . . .  <~.~:j 

Suppose that j =  2k. Split the sum in (120) into two parts, running 
over xl ,  x3,..., x2~-1, resp. x2, x4,..., X2k. Note that 

a(xl  ..... x2k)/a(xl ,  x3 ..... x2k-  1) <~ (2k )!/k ! 

and exploit the indicator of the event {SUpx l , (x)  <~ n~/Zh(n)} appearing in 
(118). Then, on this event, we get the following bound with the help 
of (**): 

~< (2k)! 
1(120)1 --~-.  [nl/2h(n)] k E f f (x I , x3 , . . . , x2k- l )  

xl <~x3 <~ . . ,  <~x~_ I 

l , , ( x l )  x l , ( x 3 )  x . . .  x l , ( x 2 k _  i) 

X{ [~ m ( x 2 - - x l ) m ( x 3 - - x . ~ )  
X2~ ,X3] 

X 2 m ( x 4 - - X  3 ) r e ( x 5  - - x  4) 
x4~ [x3,x5 ] 

x ..- • ~ m(xzk - -X2k_ l )~  (121) 
x2k ~ x2k- I ) 

For every xl ~< x3 ~< ... ~< xz~_ 1 the term between braces is bounded above 
by ( M 2 ) k - ~ M  with M = ~ o  re (x )< ~ [recall (**)]. Pulling this factor 
in front of the sum and noting that 

a(Xl ,X3 ..... X 2 k _ I ) I , ( x l ) x l , ( x 3 ) x  . . .  x l , ( X z k _ l ) = n  k 

.,, <-,3 ~< ... ~-~-, (122) 

[because ~.~ l , , (x)= n], we obtain 

1(118)1 ~ < ~  [nmh(n)]  k M 2k- ~n k ( j =  2k) (123) 

Suppose next tha{ j = 2k + 1. Repeat the above argument, now fixing first 
the even-numbered sites. The result is 

1(118)1 ~<(2k+ 1). I [nUZh(n)]k+l M2kn k ( j =  2k+ 1) (124) 
k! 
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By combining (123) and (124), we arrive at the following estimate for the 
expectation in the r.h.s, of (116): 

E(e r q"] 1 {sup In(x) <<. n '/2h(n) } ) 
.ir 

1 1 
<~ 1 + ~_, -~. [r [1 + MCnl/Zh(n)] 

k > ~ l  

~{1  + ~  [1 + 1  M~nl/2h(n)]} e ~2M2"3ah(") (125) 

Finally, substitute (125) into (116) and pick { such that 
-{n3/4g(n)+{2M2n3/2h(n) is minimal, i.e., {=g(n)/2MZn3/4h(n). Under 
the assumption stated in the lemma this choice satisfies M{n'/Zh(n),~ 1 and 
gives the bound n exp[-gZ(n) /4M2h(n)]  as claimed in (115). | 

L e m m a 1 2 .  If either h(n)=o(n  m)  or h(n)=en t/z (0<~,~1),  then 
for large n 

P(sup l .(x) > nl/2h(n ) ) <~ ne-a2h2(n)[4 (126) 
x 

Proof. First observe that 

P(sup In(X) > nmh(n))  
x 

<~ ~. P(ln(S(i))>n~/2h(n), S ( j ) ~ S ( i ) f o r O < ~ j < i )  
O ~ < i < n  

<<. nP( l,,(O ) > nl/2h(n ) ) (127) 

Let Pk denote the kth return time of S to 0. Then 

P(I,,(O) > nl/'-h(n)) <~ P(I,,(O) > [_n'/2h(n)])= P(pL,,.2h(.)j < n) (128) 

Since Pk is the sum of k i.i.d, copies of p~, we have for any ~ > 0 

P(pL .,ah(.) 3 < n) <~ er { Ee - ~v, } L.';-h(,,).J (129) 

Moreover, it is well known that (z) 

Ee-~V'= ~. e - ~ " e ( p l = n )  
n > ~ l  

fy o)}-' = 1 - e-r  = 
k n ~ > O  

= 1 -- (20"2~) 1/2 ['1 + O(1)'] 

= exp[ - (20"2~) 1/2 -+- 0 (~1 /2 ) ]  (~--, o) (13o) 
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Now choose ~ such that r is minimal, i.e., 
~=aZh2(n)/2n. Then the exponent in the r.h.s, of (129) becomes 
-�89 + o(h2(n)/n)]. If we pick either h(n)= o(n 1/2) or h(n)= en 1/2 
(0<e ,~  I), then the claim follows via (127)-(129). II 

By combining Lemmas 11 and 12 we get 

P(N(n) - qn > n3/4g(n)) <~ ne-,,Zh~C,i + ne-g2~"l/4M~h~"~ (131 ) 

This gives a large-deviation bound for N(n) one way. The reverse bound is 
the same: simply interchange the roles of 0 and 1 in C and note that this 
preserves ( . )  and (**) with the same M. Finally, choose h(n} such that the 
two exponents in (131) become equal for given g(n), i.e., h (n)= 
[g2(n)/M2trZ ] i/3. Then we arrive at 

1 tr2:3 for n large P(IN(n) - qnl > n3/4g(n)) <~ 4n exp - 

(132) 

From (132) we can now read off (23) and (24) by setting g(n)=en TM, resp. 
g(n) = L(log n) 3/4. This completes the proof of Proposition 1. 

6. R E M A R K S  A N D  E X T E N S I O N S  

It should be clear from the proofs in Sections 2-5 that the results in 
Section 1 can be extended in various directions. First of all, the (embedded) 
vertical random walk along the connected columns is independent of every- 
thing else and so this might as well be any random walk on 7/, provided 
we choose it to have increments of mean zero and finite variance in order 
to preserve the linear relation between xZ(n), yZ(n) and En.,~(n), En.v(n ) [see 
(9)]. Also the (embedded) horizontal random walk is flexible, but we 
have to take care that it, too, is independent of the column arrangement, 
which places some restriction on the transition probabilities. Proposition 1 
is valid for any mean-zero finite-variance random walk on 7/. Hence all 
the results in Section 1 preserve their form, and only the two density 
parameters qx and qy need modification. 

Another possible extension is to higher dimension. Here one may 
consider models ~vhere random columns are connected, or random planes, 
etc. Again, as long as the (embedded) components of the random walk are 
independent of the arrangement the proofs in Sections 2-4 work. It is 
straightforward to modify Proposition 1 to higher dimension [assuming a 
suitable analog of (**)]. The large-deviation estimates actually get better. 



918 den Hollander 

It  is m u c h  less tr ivial  to a l low bo th  c o l u m n s  and  rows to be r a n d o m l y  

connec ted .  In this case n a m e l y  the J ( j )  in (30) are  no  l onge r  i n d e p e n d e n t  

and  this obs t ruc t s  the analysis  cons iderab ly .  T h e o r e m  I carr ies  th rough ,  

but  T h e o r e m  2 requires  ser ious modi f ica t ions .  
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